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Abstract

Numerical and analytical studies on viscous air damping in laterally oscillating microcomb structures are discussed

in this work. Previous investigators modeled this type of flow field using Couette and Stokes flow models. The nu-

merical simulation results demonstrate that the flow is much more complex and quite different from the Couette or

Stokes flow. The pumping and sucking motions at the edges of the oscillating electrode create a fluid brake. This fluid

brake retards the horizontal movement of the flow and generates a strong vortex in the region between the oscillating

electrode and the base material, which has not been reported before. The deceleration of the fluid also increases the

velocity gradient on the surfaces of the oscillating electrode, which gives rise to a higher damping. The numerically

predicted damping is about 2.8 times larger than that predicted by the Stokes flow model.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

On going advances in semiconductor fabrication

technology have led to a new generation of sensors and

actuators. Among these new devices are the laterally

driven microactuators and microsensors. In contrast to

vertically driven devices, with damping provided by the

fluid squeeze-film produced by the relative axial or tilt-

ing motion of two closely spaced plates [1], the viscous

shear in thin fluid films is the dominant damping

mechanism in laterally moving microstructures. The

attractive features of laterally driven microstructures

have been proven by resonant sensors and actuators

[2,3], frequency selective microfilters and damped mic-

roaccelerometers [4]. The damping level of a micro-

structure plays an important role in the performance of

a system. For example, adequate damping is needed to

obtain flat output signals over wide frequency ranges

and prevent amplitude and phase distortions [4].

Fig. 1 shows a typical laterally moving microcomb

structure, consisting of a mass suspended with tethers

anchored onto the sensor body. For convenience and to

avoid confusion we will refer this as a type I micro-

structure. Each pair of fixed and moving electrodes

constitutes a differential capacitor. The lateral motion of

the moving mass alters the distance between the capac-

itor and changes the output voltage. The output voltage

of the system is nearly linear if the lateral motion am-

plitude of the moving mass is small. In order to maintain

system sensitivity, the stiffness of the supporting tethers

should be kept small.

The characteristic feature of the type I microcomb

structure, Fig. 1, is that its oscillating direction is per-

pendicular to the longitudinal axis of the moving elec-

trode and its oscillating amplitude is small. Because the

output voltage of each capacitor is small, a series of

capacitors are usually combined together to produce

higher output voltage. Typical examples of such micro-

structures are ADXL-05 and -50 developed by the An-

alog Device Corporation and utilized in airbag systems.

Studies on the dynamic behavior of type I microcomb

structures are scarce in the literature. Another type of

resonant microstructure, which we will refer to as type
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II, oscillating in the direction parallel to the longitudinal

axis of the oscillating electrode is shown in Fig. 2. The

dynamic performance of type II microstructures was

studied by several investigators experimentally as well as

analytically [3–5]. Type II microstructures have a larger

oscillating amplitude. The purpose of this study is to

Nomenclature

d distance between oscillating electrodes and

base material (m)

dc gap between oscillating and fixed electrodes

(m)

D dissipation energy (J)

e factor ¼ 2.71828

E strain energy of the comb structure (J)

h height of oscillating electrodes (m)

l length of oscillating electrodes (m)

K equivalent stiffness of the supporting tethers

for the seismic mass (N/m)

Kn Knudsen number ¼ k=d
L characteristic length ¼ one half width of the

computational domain (m)

M mass of the movable comb structure (kg)

p dimensional pressure (N/m2)

P non-dimensional pressure

Q quality factor ¼ 2pE=D
Re Reynolds number ¼ qv0L=l
St Strouhal number ¼ Lx=v0
V dimensional velocity in Y -direction (m/s)

V non-dimensional velocity in Y -direction
v0 lateral velocity of the oscillating electrode

(m/s)

W non-dimensional velocity in Z-direction
Wc width of oscillating electrodes (m)

Y dimensional Y -coordinate (m)

Y non-dimensional Y -coordinate
Z dimensional Z-coordinate (m)

Z non-dimensional Z-coordinate

Greek letters

bn convenient parameter ¼ Lnp=d
s non-dimensional time ¼ xt
vw shear stress at wall (N/m2)

q air density (kg/m3)

x resonant frequency of the oscillating elec-

trode (rad/s)

d penetration depth (m)

c non-dimensional parameter ¼ StRe
k mean free path of air molecules (m)

r ratio of diffusively reflected molecules

1 damping ratio ¼ 1=2Q

Subscripts

I, II, III, IV section I–IV

n nth term in a series

w wall

Fig. 1. The schematic diagram of a type I microcomb structure.
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develop numerical schemes that are able to simulate the

flow field of type I microcomb structures.

Because studies on the dynamic performance of type I

microcomb structures are scarce in the literature, we

introduce research work conducted on the dynamic

performance of type II microcomb structures. Tang et al.

[3] investigated viscous air damping in type II microcomb

structures based on a Couette flow model. The theoreti-

cally estimated quality factors, Q, although qualitatively

consistent with the measured Q, were much higher than

the measured values. Cho et al. [4] studied this problem

(type II) by modeling the flow between the oscillating

electrode and the base material as a Stokes-type flow.

The quality factors calculated by the Stokes-type flow

model were in better agreement with the experimental

data than factors computed using the Couette-type flow

model. However, large discrepancies still remained be-

tween the estimated andmeasuredQ. Zhang and Tang [5]

developed an empirical formula based on experimental

data to include the edge and finite-size effects (type II).

This formula was based on a very limited database and

has not been extensively validated.

The Couette and Stokes flow models are the only

available analytical investigations seen in the literature

besides experimental work. Knudsen numbers in typical

microcomb structures indicate that part of the flow is in

the slip flow region. The influence of the slip effect on

viscous damping has not been reported. This study in-

vestigates this problem analytically as well as numeri-

cally. The slip effect is also included in this study.

2. Analytical solutions

2.1. Governing equations

Because the gaps in a microcomb structure are usu-

ally quite small compared to its length (Fig. 1), the flow

in a cross-section parallel to its oscillating direction can

be assumed to be two-dimensional. The governing

equations are the unsteady two-dimensional incom-

pressible Navier–Stokes equations, which are expressed

in non-dimensional form in the following:

oV

oY
þ oW

oZ
¼ 0 ð1Þ

StRe
oV
os

þ Re V
oV

oY

�
þ W

oV

oZ

�

¼ � oP

oY
þ o2V

oY
2

�
þ o2V

oZ
2

�
ð2Þ

Fig. 2. The schematic diagram of a type II microcomb structure.
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StRe
oW
os

þ Re V
oW

oY

�
þ W

oW

oZ

�

¼ � oP

oZ
þ o2W

oY
2

�
þ o2W

oZ
2

�
ð3Þ

The physical quantities are normalized using the fol-

lowing relations:

Y ¼ Y =L; Z ¼ Z=L; V ¼ V =v0; W ¼ W =v0;

P ¼ ðP � P1Þ=ðlv0=LÞ; s ¼ xt

The parameter Re and St are the Reynolds and Strouhal

numbers, respectively, and are defined by Re ¼ qv0L=l,
St ¼ Lx=v0.

2.2. The solution of region I

In deriving the analytical solutions (Fig. 3), the os-

cillating electrode was assumed to be infinite, making

this problem a flow over an impulsively started oscil-

lating plate. The W velocity vanishes. The governing

equation and the corresponding boundary conditions

are

c
oV 0

os
¼ o2V 0

oZ
2

ð4Þ

V 0 ¼ cos s for Z ¼ d þ h
L

ðon the oscillating electrodeÞ ð5Þ

V 0 ¼ 0 for Z ! 1
ðfar away from the oscillating electrodeÞ ð6Þ

where c ¼ StRe. Eq. (4) is a parabolic equation that can

be solved using the separation of variables method [6].

The result is

V 0ðs;ZÞ ¼ � 2ffiffiffi
p

p
Z 1

2

ffiffi
c
s

p
Z�dþh

Lð Þ

0

cos s

�
� c
4l2

Z
�

� d þ h
L

��

	 expð�l2Þdlþ exp

�
�

ffiffiffi
c
2

r
Z
�

� d þ h
L

��

	 cos s

�
�

ffiffiffi
c
2

r
Z
�

� d þ h
L

��
ð7Þ

The first term in the above equation represents the

transient motion, which dies down after some time. The

second term denotes the steady state motion of a type I

microcomb structure. The energy dissipated by the vis-

cous shear per oscillating cycle in region I can be cal-

culated using

DI ¼
Z
AI

Z 2p=x

0

vwv0 cosxtdtdA ð8Þ

The parameter vw is the viscous shear at the wall and

v0 cosxt is the velocity of the oscillating electrode.

2.3. The solution of region IV

The governing equation and the corresponding

boundary conditions are

c
oV 0

os
¼ o2V 0

oZ
2

ð9Þ

V 0 ¼ 0 for Z ¼ 0 ðon the silicon substrateÞ ð10Þ

V 0 ¼ cos s for Z ¼ d=L

ðon the oscillating electrodeÞ ð11Þ

Eq. (9) is a parabolic equation that can be solved using

the separation of variables method [7,8]. The result is

V 0ðs; ZÞ ¼
2L
d

X1
n¼1

ð�1Þnb3
n

b4
n þ c2

sinðbnZÞ expð�b2
ns=cÞ

þ L
d
Z cos s þ 2L

d

X1
n¼1

ð�1Þnbnc

b4
n þ c2

	 sinðbnZÞ
c

b2
n

cos s

 
þ sin s

!
ð12Þ

The first term in the above equation represents the

transient motion, which dies down after some time. The

second and third terms denote the steady state motion of

a type I microcomb structure. The energy dissipated by

the viscous shear per oscillating cycle in region IV can be

calculated using Eq. (8).

The strain energy of a microcomb structure is

E ¼ 1

2x
v20

ffiffiffiffiffiffiffiffi
MK

p
ð13ÞFig. 3. The coordinate system for the analytical and numerical

solutions.
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where M is the seismic mass of a microcomb structure

and K denotes the equivalent stiffness of the supporting

tethers for the seismic mass. The strain energy of a mi-

crocomb structure is dissipated by the viscous shear

(region I and IV) and squeezing work (region II and III).

The quality factor, Q, is defined as

Q ¼ 2p
E
D

ð14Þ

where D ¼ DI þ DII;III þ DIV. The damping ratio of a

microcomb structure is defined by

1 ¼ 1

2Q
ð15Þ

3. Numerical solutions

3.1. The numerical boundary conditions

Because the oscillating amplitude is small compared

with the width of the oscillating electrode (Fig. 3) the

movement of the electrode was approximated using fluid

injection and suction on the edges of the oscillating

electrode. In the numerical simulations the oscillating

electrode was fixed, but a cos s velocity was imposed on

the upper and lower surfaces as well as on both edges of

the oscillating electrode. The non-dimensional boundary

conditions are

(1) V ¼ W ¼ 0, on the surfaces of fixed electrodes.

(2) V ¼ cos s, W ¼ 0, on the surfaces of oscillating elec-

trodes.

(3) V ¼ W ¼ 0, on the silicon substrate (Z ¼ 0).

(4)
oV

oZ
¼ oW

oZ
¼ oP

oZ
¼ 0, as Z ! 1.

(5) Periodic boundary conditions were utilized on the

left and right boundaries.

(6) The slip boundary conditions were used if the slip

flow assumption was assumed.

These boundary conditions were derived as follows:

The mean free path, k , of the air under standard

atmospheric conditions is about 0.06 lm. The gap, d, in
regions II, III, and IV for a typical microcomb structure

is about 2 lm. The Knudsen number in these regions is

Kn ¼ k=d ¼ 0:03, which indicates that the flow is in the

slip flow region and the slip effects must be taken into

account. For slip flows the fluid can be assumed to be a

continuum but the slip boundary conditions must be

utilized to account for the incomplete momentum ex-

change between the gas molecules and the walls.

Assuming an infinite plate is oscillating with a ve-

locity v0 cosxt and the flow above it is a slip flow. Ad-

jacent to the plate are gas molecules, one half of which

were reflected from the plate, the other half originate

from, on the average, a mean free path away from the

plate. The velocity of the gas molecules a mean free path

away from the plate can be expressed as a Taylor�s ex-
pansion [9]

VZ¼k ¼ VZ¼0 þ k
oV
oZ

� �
Z¼0

ð16Þ

The molecules reflected diffusively from the plate will

have the tangential velocity of the plate. The molecules

reflected specularly from the plate will have the same

tangential velocity as those from a mean free path away

from the plate. We assumed that r is the ratio of diffu-

sively reflected molecules. The tangential velocity of gas

molecules adjacent to the plate is the average of the

velocity of the incoming molecules and the velocity of

the reflected molecules.

VZ¼0 ¼
1

2
VZ¼0

	
þ k

oV
oZ

� �
Z¼0




þ 1

2
ð1
	

� rÞ VZ¼0

�
þ k

oV
oZ

� �
Z¼0

�
þ rv0 cosðxtÞ




¼ 2� r
r

k
oV
oZ

� �
Z¼0

þ v0 cosðxtÞ ð17Þ

If the plate is fixed then the slip boundary condition

becomes

VZ¼0 ¼
2� r

r
k

oV
oZ

� �
Z¼0

ð18Þ

In general, the coefficients r may depend on the surface�s
roughness, temperature, and the gas type. We assumed

that r ¼ 1 in this study. The slip W velocity in regions II

and III can also be derived in a similar way.

The slip boundary conditions were used on the side

surfaces of the electrodes, i.e. the surfaces of regions II

and III, and the top and bottom surfaces in region IV, if

the slip flow assumption was specified.

3.2. The numerical procedure

The governing equations for the numerical simula-

tions were Eqs. (1)–(3). To avoid pressure oscillations

the Marker and Cell finite difference scheme in con-

junction with a stagger grid was utilized [10]. An explicit

finite difference scheme was used to discretize the gov-

erning equations. The computer program was validated

first using the cavity flow problem, it was found that for

very small Reynolds number flows an implicit scheme

could only use a Dt twice large as that for an explicit

scheme due to the stability constraint. However, the

programming for the implicit scheme was much more

complicated than that for the explicit scheme. We de-

cided to adopt the explicit scheme for ease of pro-

gramming. The convection and diffusion terms in the

governing equations were central differenced. The non-

linear terms in the finite difference equations were
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linearized by lagging the coefficients. The truncation

error was therefore OðDsÞ þOðDY Þ2 þOðDZÞ2.
The momentum equations, Eqs. (2) and (3), were

differentiated with respect to Y and Z, respectively, and
added together to obtain a Poisson equation for pres-

sure.

o2P

oY
2
þ o2P

oZ
2
¼ �StRe

oS
os

� Re
o2V

2

oY
2
� 2Re

oV W

oY oZ

� Re
o2W

oZ
2
þ o2�SS

oY
2
þ o2S

oZ
2

ð19Þ

where S ¼ oV
oY

þ oW
oZ
. The expression S

nþ1 ¼ oV
oY

þ oW
oZ

� �nþ1

in the oS=os term was set equal to zero, because when

the pressure field converges at the nþ 1 time step the

continuity equation should be satisfied [10].

In the numerical simulations, the Poisson equation

was solved first by iteration to obtain the pressure. The

convergence criterion for the pressure field wasP
jPkþ1

i;j � P
k
i;jj6 10�4, the superscription k is the itera-

tion number. After convergence, the pressure was then

substituted into the momentum equations, Eqs. (2) and

(3), to solve for the V and W velocities. This completed

one time step. This process continued until the periodic

steady state was reached. The convergence criterion for

the periodic steady state wasX
V

nþ1

i;j

��� � V
n
i;j

���6 10�4 ð20Þ

where n is the oscillating cycles of the electrode. Eq. (20)

was applied at the beginning of each oscillating cycle, if

the criterion was met the calculation stopped. This

process was time accurate.

3.3. Grid independence test and the grid

The value of ReSt and Re for the model microstruc-

ture (Table 1) are 0.12 and 0.00083, respectively. The

stability constraint was dominated by the parameter

ReSt. Due to the small ReSt value, a very small time

step, Ds ¼ 5	 10�6, was required in the numerical sim-

ulations. This study adopted a uniform grid. The com-

putational domain for this study consists of 62 grids in

the Y -axis and 52 grids in the Z-axis. It took about 48 h

CPU time in a Pentium IV 1.5G PC to run an electrode

oscillating cycle. Four oscillating cycles were required to

satisfy the periodic steady state criterion described by

Eq. (20). The boundary in the Z direction extends from

Z ¼ 0 to 5d with d the gap in region IV.

Fig. 4. The V velocity comparison along the Y ¼ 0 axis for the 62	 52 grid, 122	 52 grid, and 62	 102 grid, ReSt ¼ 12.

Table 1

Dimensions and parametric values of the type I microcomb

structure [11]

Structure thickness (h) 1.8 lm
Air film thickness (d) 2.0 lm
Finger width (Wc) 4.0 lm
Finger gap (dc) 2.0 lm
Effective damping area in region II and

III

0:54	 104 lm2

Effective damping area in region I or II 2:93	 104 lm2

Equivalent stiffness (K) 3:08	 10�7 N/lm
Effective mass (M) 0.123 lg
Resonant frequency 7.98 kHz

Reynolds number (Re) 0.00083

Strouhal number (St) 144.58
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Because it was very time consuming to run ReSt ¼
0:12 cases, we decided to conduct a grid independence

test on ReSt ¼ 12 cases. A 62	 52 grid, a 122	 52 grid,

and a 62	 102 grid were simulated with ReSt ¼ 12. The

V velocity distributions along the Y ¼ 0 axis for the

three grids are depicted in Fig. 4. The difference is very

small as shown in Fig. 4. The 62	 52 grid was chosen

for the ReSt ¼ 0:12 simulation cases.

In order to study the influence of the boundary extent

in the Z direction on the results, a case with ReSt ¼ 12, a

62	 102 grid, and the vertical boundary extending to

10d was simulated. The results show that extending the

boundary does not affect damping in region IV, but

damping in region I increases 2.5%. The distance of the

top boundary to the oscillating electrode does have a

small effect on the results. In the ReSt ¼ 0:12 simulation

cases the vertical boundary was extended to 5d due to

computing time considerations.

4. Results and discussion

In order to validate the numerical solutions, the nu-

merical procedure was used to calculate the flow field of

a type I microcomb structure. The dimensions and re-

quired parameters of this model are listed in Table 1

[11]. Fig. 5 depicts the streamline plot at s ¼ 0 after the

periodic steady state is reached. It took four oscillating

cycles for the calculation to reach the periodic steady

state. The convergence criterion was described by Eq.

(20). The boundary conditions are the nonslip condi-

tions. The flow field in region IV is quite different from

the Stokes flow. The oscillating electrode moves to the

right at its maximum velocity at s ¼ 0. Its right edge

pushes the fluid out of region III and forces the fluid to

go upward and downward. The downward moving fluid

in region IV behaves like a fluid brake, which retards the

right moving fluid in region IV and forces it to turn back

to form a vortex. The left edge of the oscillating elec-

trode sucks the fluid into region II. The upward moving

fluid at the intersection of region II and IV also acts like

a fluid brake, which forces the left moving fluid near the

substrate of region IV to turn back and helps to form the

vortex in region IV. The flow in region IV is a vortex and

cannot be modeled by the Stokes flow model.

The penetration depth in a Stokes flow, defined as a

distance over which the surface motion amplitude de-

creases by a factor of e, is much greater than the gap d in

region IV. The penetration depth calculated by the

Stokes flow model is d ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m=x

p
[12], which gives a

numerical value of 24.5 lm for the present model (Table

1). This indicates that the penetration depth is far

greater than the gap d, 2 lm, in region IV. The flow field

can very quickly detect any changes in the boundary

conditions. The vortex flow in region IV is influenced

strongly by the boundary conditions but very weakly by

the parameters Re and ReSt. The numerical simulations

proved this. We changed ReSt from 0.12 to 12. The

vortex in region IV was nearly identical for the two

cases.

The flow in region I is also different from the Stokes

flow. The pumping and sucking motions of the oscil-

lating electrode are significant as shown in Fig. 5. The

upward moving fluid from region III again acts like

a fluid brake and slows down the velocity of the right

moving fluid in region I. Fig. 6 depicts the streamline

plot at s ¼ p=2 after the periodic steady state is reached.

Fig. 6. The streamline plot at s ¼ p=2 subject to the nonslip

boundary conditions after the periodic steady state is reached.

Fig. 5. The streamline plot at s ¼ 0 subject to the nonslip

boundary conditions after the periodic steady state is reached.

C.-S. Chen, C.-F. Chou / International Journal of Heat and Mass Transfer 46 (2003) 695–704 701



The boundary conditions are the nonslip conditions. At

this instant the oscillating electrode reaches its right

most position and its velocity is zero. The fluid still

moves but the velocity is nearly zero everywhere in the

flow field and this is consistent with the physical phe-

nomenon. Fig. 7 shows the streamline plot at s ¼ p after

the periodic steady state is reached and the boundary

conditions are the nonslip conditions. The flow field is

similar to that in Fig. 5 but with opposite directions.

Fig. 8 shows a comparison of the V velocity distri-

bution at the middle of region IV (Y ¼ 0) at different

times subject to the nonslip and the slip boundary con-

ditions. The velocity distributions at s ¼ 0 are identical

to those at s ¼ p but with opposite directions. The slip

effect can also be clearly seen from the comparison. Fig.

9 compares the V velocity distributions at several dif-

ferent Y planes in region IV at s ¼ 0. The V velocity

distributions in the central region of the vortex are al-

most identical, but they are clearly different from those

at the edge. Fig. 10 compares the V velocity distributions

at two different Y planes (at the center and near the right

edge) in region IV at s ¼ 0 subject to the nonslip and the

slip boundary conditions. The slip effect is clearly dem-

onstrated.

Damping affects amplitude as well as frequency in a

microcomb structure. Damping is therefore an impor-

tant design parameter. The damping ratio is related to

the quality factor by 1 ¼ 1=2Q . The quality factor of the

model system is defined by 1
Qs
¼ 1

QI
þ 1

QII
þ 1

QIII
þ 1

QIV
. The

subscription s represents the model system. Subscrip-

tions I–IV represent sections I–IV, respectively. Table 2

compares the quality factors calculated by the numerical

simulations and the analytical solutions. The energy

dissipated in regions II and III was calculated using

DII ¼ 4

Z
AII

Z 2p=4x

0

DPv0 cosxtdtdA ð21Þ

where DP is the pressure difference between the right and

left surfaces of the oscillating electrode. As demon-

strated in the table, regions I and IV contribute 24% and

60% of the total damping, respectively. Regions II and

III contribute about 16%.

Fig. 7. The streamline plot at s ¼ p subject to the nonslip

boundary conditions after the periodic steady state is reached.

Fig. 8. The V velocity distributions along the Z-coordinate at the center (Y ¼ 0) of region IV at different times after the periodic steady

state is reached.
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The numerical quality factor in region IV subject to

the nonslip boundary conditions is larger than that

subject to the slip boundary conditions by about 13%.

This implies that the slip conditions give rise to less

damping and therefore smaller viscous shear. The nu-

merical quality factors in regions I and IV are both

much smaller than that predicted by the analytical so-

lutions (the Stokes flow model). The Stokes flow

Fig. 9. The V velocity distributions in region IV along the Z-coordinate at different Y locations, s ¼ 0. The numbers 0, 0.25, 0.5, 0.75,

and 1.0 on the legend denotes the left edge, a quarter width, a half width, three quarters width, and the right edge of the moving

electrode, respectively.

Fig. 10. The comparison of V velocity distributions in region IV along the Z-coordinate at different Y locations subject to the nonslip

and the slip boundary conditions, s ¼ 0. The numbers 0 and 0.5 on the legend denotes the left edge and a half width of the moving

electrode, respectively.
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assumes that the oscillating electrode is an infinite plate

in the Y direction. However, numerical simulations re-

veal that ‘‘the fluid brake effect’’ is quite significant in

such flows. The fluid brake created by the pumping and

sucking of the oscillating electrode decelerates the hor-

izontal movement of the fluid. The velocity gradient

between the fluid and the moving wall therefore becomes

much larger than that predicted by the Stokes flow.

Although there is no experimental data on the type I

microcomb structure to directly back up the conclusions

of this study, the experimental data for type II micro-

comb structures conducted by Zhang and Tang [5] did

suggest that the damping on the oscillating electrode was

about 2–3 times higher than that predicted by the Stokes

flow model. Even though numerical simulations on type

II microstructures have not been reported, we guess that

the explanations for Zhang and Tang�s experimental

results are probably similar to the conclusions in this

study, because there are some similarities in configura-

tion and movement between these two types of micro-

structures. Numerical simulations on type II microcomb

structures are currently undertaken by the authors.

5. Conclusions

Previous investigators modeled the flow field of lat-

erally oscillating microstructures as a Couette flow or

Stokes flow. The numerical simulation results in this

study demonstrate that the flow is much more complex

and quite different from the Couette or Stokes flow. The

major difference is caused by the fact that the pumping

and sucking motions of the oscillating electrode creates a

fluid brake effect. This fluid brake retards the horizontal

movement of the fluid in regions I and IV. The fluid

deceleration generates higher velocity gradients on the

surfaces and gives rise to a greater damping. This fluid

brake effect is quite strong, which increases the damping

and therefore reduces the quality factor to about 36% of

that predicted by the Stokes flow model. The flow in

region IV consists of a strong vortex. This vortex flow

depends strongly on the boundary conditions but very

weakly on the StRe and Re parameters. This is because

the gap in region IV is much shorter than the penetra-

tion depth of the flow.
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The comparison of analytical and numerical quality factors in different regions for the type I microcomb structure
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16.52 26.59 7.78 4.41

Analytical quality factors (the Stokes flow model) 286.75 25.28 22.86 11.52
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